Basic Arithmetic - Things To Remember!

Square Formulas

  • 1. (a + b)2 = a2 + 2ab + b2
  • 2. (a − b)2 = a2 − 2ab + b2
  • 3. a2 + b2 = (a + b)2 − 2ab
  • 4. a2 + b2 = (a − b)2 + 2ab
  • 5. a2 + b2 = ½{(a + b)2 + (a – b)2}
  • 6. a2 − b2 = (a + b)(a − b)

Cube Formulas

  • 1. (a + b)3 = a3 + b3 + 3ab(a + b)
  • 2. (a − b)3 = a3 − b3 − 3ab(a − b)
  • 3. a3 + b3 = (a + b)3 − 3ab(a + b)
  • 4. a3 − b3 = (a − b)3 + 3ab(a − b)
  • 5. a3 − b3 = (a − b)(a2 + ab + b2)
  • 6. a3 + b3= (a + b)(a2 − ab + b2)

All other Algebra Formulas

  • a4 – b4 = (a2 – b2)(a2 + b2) = (a + b)(a – b)(a2 + b2)
  • a4 + b4 = (a2 + b2)2 – 2a2b2 = (a2 + √2ab + b2)(a2 – √2ab + b2)
  • a5 + b5 = (a + b)(a4 – a3b + a2b2 – ab3 + b4 )
  • a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)
  • an − bn = (a − b)(an−1 + an−2 b + an−3 b2 + ··· + bn−1n−1)
  • (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
  • a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
  • If a + b + c = 0, then the above identity reduces to a3 + b3 + c3 = 3abc
Ready to Practice!